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The nature of anisotropic fluctuation modes in an ordered polymeric system is analysed using general symmetry
arguments. It is shown that the anisotropic fluctuation modes in a periodic phase can be classified using a wave
vector within the irreducible Brillouin zone and a band index. The spatial profiles of the fluctuation modes are
described by Bloch functions which are plane waves modulated by periodic functions. These general statements
enable the study of the stability and kinetic pathway of complex ordered polymeric strucut©98 Elsevier

Science Ltd. All rights reserved.
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INTRODUCTION ordered periodic structure. Therefore the application of this
powerful method is much more general. In this paper the
spectrum of Gaussian fluctuations around an ordered phase
is analysed using the symmetry argument, leading to the
band structure description of the fluctuation modes.

In the history of physics, great progress and/or deep insight
into a new problem were often obtained by making an
analogy with known problems. Examples in polymer
physics include the genesis of the now widely used Edwards
modef, which has its roots in quantum electrodynarfiics
and the relationship between polymer statistics and critical SYMMETRIES AND ANISOTROPIC FLUCTUATIONS
phenomen3 which allows the application of the renor- . .
malization principles and techniques to polymers. Great Gaussian fluctuations
progress has also been obtained by using the analogy In order to study the stability of an ordered structure, itis
between ideal polymer chain statistics under external necessary to consider thermal fluctuations around the
potentials and a quantum mechanical probledm this ordered phase. In the spirit of density functional theory,
paper, anisotropic fluctuation modes in ordered polymeric the phase behaviour of a polymeric system can be described
phases are analysed by exploiting an analogy with solid by a free energy functiongl({$}) which depends on a set
state physicsof an electron in a crystalline solid. It is well  Of order parameters,(r). For an ordered phase, the density
known that, due to the translational symmetry of the crystal profiles ¢{ are periodic functions which are determined
structures, the electronic energy forms a band struttiire by extremizing the free energy functional, leading to the
will be shown that, for a polymeric ordered periodic mean-field equations
structure, the anisotropic fluctuation modes form a band aF
structure due to the translational symmetry. The fluctuation 36N o = @)
modes can be classified using a wave vector within the * ga
irreducible Brillouin zone and a band index. This cata- It should be noted that the derivative operatorstand for
loguing of fluctuation modes using symmetry provides a functional derivatives. The fluctuations around the mean-
powerful tool to study the fluctuations and instability of field ordered state can be described by expanding the
ordered polymeric structures. Applications of this method order parameters
to diblo%k copolymer melts have led to many interesting 6o (1) =0(r) +66,(r) (2)
results™, . . . . The free energy functional can be expanded around the
In the theory of anisotropic fluctuations in block copoly- mean-field solution
mer ordered phas®sthe derivation of a band structure 0 W @
for the fluctuation modes exploits the analogy between a F=F" +6F7 + 679+ ... 3)
polymer chain in a periodic potential and an electron in where the zeroth order terf® = #({¢%}) is the mean-
a crystalline solid,viz. both systems are described by a field free energy, the first-order contribution vanisihg&’
Schradinger equation with a periodic potential. This = 0 since¢(r) extremizesf, and the higher order con-
development may lead to the wrong impression that the tributions are given by functional derivativesévaluated
band structure in the fluctuation modes is a result of this at the mean-field solution
particular quantum mechanics analogy. However, it must N
be emphasized that the formation of the band structure isa s _ Z iJ’drl---drn 97
consequence of the discrete translational symmetry of the w, N 9P, (1) 06q, (Fn)| 4o

X 6¢a1(r l)' . '6¢an (r n) (4)
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For the study of the stability of the ordered phases, it is application of a symmetry argument to the problem provides

useful to consider the second-order (Gaussian fluctuation)a powerful method to classify the fluctuation modes.

contributions, which quantify the free energy cost of fluc- ) ) ) .

tuations at this order. In particular, if this free energy cost is Using symmetries to classify fluctuation modes

positive, then the ordered phase is stable. The condition that One of the great lessons of classical and quantum

F@ = 0 determines the spinodal point of the ordered phase. mechanics is that the symmetries of a system allow one to
The Gaussian fluctuations in an ordered phase aremake a general statement about the system’s behaviour.

formally described by a two-point operator Because of the mathematical structure developed above, it
1 1 is not too surprising that symmetry also helps to determine
7(2)27(5(1,,@5@5 ,Z Jdrdr’éaﬁ(r,r’)8¢>a(r)6¢ﬂ(r’) the properties of the anisotropic fluctuation modes in
2 25 ordered polymeric structures.
(5) In order to study the fluctuation modes in an ordered

structure, the eigenvalue problemy, =\y,, has to be
where the bracket denotes the usual scalar prodi4ct,  solved. For a general ordered phase, the structure can
denotes a vector with componerdis,(r). For a setof real  pe quite complex so that it would be hard to solve the
order parameters, is a linear real symmetric operator with  gjgenvalue problem explicitly. However, it is important to
components’,4(r, r’). If the order parameters are complex, notice that for an ordered structure, the system has certain
C is a linear Hermitian operator because the free energy Ofsymmetries. These symmetries can be exploited to give a

the system must be real. The components afe given by powerful method for the description of the anisotropic
the second-order functional derivatives of the free energy flyctuation modes.

functional evaluated at the mean-field solution It is helpful to place the above notion in a formal setting
T using group theory arguments. For an ordered structure, the
Cop(r 1) = v (6) system is invariant under certain symmetry operations such

990 (r)dds(r')| o as translation, rotation, and inversion. The application of

these operations on the order parameters is formally
described by an operatap. If a particular symmetric
operation is a symmetry of the ordered structure under

The fluctuations can now be expressed as a linear combina
tion of eigenfunctions of

. B N consideration, then it should not matter whether one
> Jdr Cop(r, 1) (r) =NYX(r) (7 operates with¢, or one first performs the symmetric
b operation, then operates with, and then changes them
where A denotes the eigenvalues 6f BecauseC is in kaackA. I}/IAa:[hematically, this statement can be written as
general Hermitian, the eigenvaluesre real, and the eigen- C=0 "CO. This equation can be rearranged as
functions are orthogonal and normaliz&f, ) = &, [0,C]=0C—CO0=0, where[4,8] =43 — 34 is defined
Using the eigenfunctiong,(r) as the basis functions, the as the commutator of the two operatdrand3. Therefore if
fluctuationss¢ can be written the ordered phase is symmetric under a particular
symmetry operation then that symmetry operator com-
8ba(r)= D 8bysi(r) (8) mutes with ¢, i.e. [0,C]=0. The operation of this
A commutator on any eigenfunctiog, of C leads to

. . I 0, Cly\ = O(Cy) — C(Oy) = 0, which can be rewritten as
The Gaussian fluctuation contribution to the free energy can[ I =0(e9) = clod)

then be expressed using the eigenvalues and eigenfunctions C(OYn) = O(Cyn) = NOYy) (10)
of ¢ Therefore ify, is an eigenfunction of with eigenvalue\,
a1 i 1 5 then Oy, is also an eigenfunction of with the same
T = 56, Cod) = 5 % Ny | 9) eigenvalue\. If there is no degeneracy, then there can

only be one eigenfunction with eigenvalde so thaty,

The anisotropic fluctuation modes can, therefore, be classi-andOy, can be different only by a multiplicative factar
fied according to eigenfunctions of the operafotn parti- O = (11)
cular, the free energy cost of the Gaussian fluctuations is A
quantified by the eigenvalues of The most important  However, this equation is just the eigenvalue equation for
fluctuation mode is the one with the lowest eigenvalye the operatorO. Therefore, the eigenfunctiong, can be
The condition\y = 0 determines the spinodal point (or the catalogued using the eigenvalugsf the symmetry opera-
instability point) of the ordered phase, and the correspond- tor O. In the case of degenerate modes, it is always possible
ing eigenfunction), A characterizes the spatial profile of the to form linear combinations of the degenerate modes to
most unstable mode. make eigenfunctions of the symmetry operaitoGenerally

From the above derivations, it is obvious that the stability speaking, whenever two operators commute, one can con-
analysis of an ordered polymeric phase using Gaussianstruct simultaneous eigenfunctions of both operators. This is
fluctuations follows three simple steps: (1) identification of very convenient, since eigenfunctions and eigenvalues of
the appropriate order parameters and derivation of the freesimple symmetry operators are easily determined, whereas
energy functional; (2) construction of the phase diagram those for¢ are not. But if¢ commutes with a symmetry
by solving the mean-field equations; (3) construction of operatord, we can construct and catalogue the eigenfunc-
the Gaussian fluctuation operator and identification of its tions of using theirO properties. In the rest of this section
eigenvalues and eigenfunctions. These steps are concepthe application of this approach using the space group
tually simple. However, a brute force approach to the symmetries of an ordered phase will be considered.
problem is usually not efficient because of the complexity
of the structure. It is therefore desirable to simplify Continuous translation symmetryOne symmetry that
the problem. In what follows it will be shown that the a polymeric system can have is continuous translation
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symmetryviz. a homogeneous disordered phase. This phasehave the same eigenvalu8&becauses-R = (I’ + mmi

is unchanged if everything is translated through the same+ nn')2x by definition. In fact, all the modes with wave
distance in a certain direction. Given this information, the vectors of the forngq + G have the same eigenvalue, there-
functional form of the fluctuation modes can be determined. fore they form a degenerate set. Because any linear combi-
It is noted that the disordered phase has the highest possiblenation of these degenerate eigenfunctions is itself an
symmetry for a polymeric system. The ordered structures eigenfunction with the same eigenvalue, linear combina-
are obtained by breaking the symmetry of the disordered tions of the original modes can be used to construct eigen-

phase. functions of the form
A structure with translational symmetry is unchanged i@+ G)r
by a translation through a displacemeahtFor eachd, a Vo= D c(G)e

translational operatof’y can be defined. When operating ¢

on a function f(r), 74 shifts the argument byd,

T4f(r)="f(r +d). If the structure under consideration has . . .

cgngirzuou(s tran)slational symmetry, thég commutes with =€ Y (G)ECT =€ uy(r) (14)

¢, [T4,6]1=0. The fluctuation modes of can now be G

classified according to how they behave undgr In order wherec(G) are expansion coefficients to be determined by

to proceed, the eigenfunctions of the translational operatorexplicit solution, anduy(r) is a (by construction) periodic

T4 have to be obtained. It is easy to prove that the plane functionu,(r) = uq(r + R). The discrete periodicity in the

waves & are eigenfunctions of any translational operator ordered structure leads to an eigenfunction which is simply
A ias o, s i the product of a plane wave with a periodic function. This
7€ =09 = ()" (12) result is commonly known as Bloch’s theor&nand the

The corresponding eigenvalues ar89e The fluctuation form of the eigenfunction is known as a Bloch function.

modes of the homogeneous system must be eigenfunctiong®ne key fact about the Bloch functions is that the Bloch

of all the7ys, so they should have the plane wave forffi.e function with wave vectoiq and the Bloch function with

The fluctuation modes in the homogeneous phase can therewave vectorq + G are identical. Thegs that differ by a

fore be classified by plane waves with particular values for reciprocal lattice vecto® are not different from a physical
q, the wave vector. point of view. Furthermore, the eigenvalues of the fluctua-

tion modes must also be periodic in A(q) = Mg + G).

Discrete translation symmetry.For an ordered poly-  Therefore there is a lot of redundancy in the lalogl
meric phase, the system does not have continuous transBecause of the periodicity ig, attention can be restricted
lational symmetry. Instead, the ordered structure has to a finite zone in the reciprocal space in which one cannot
discrete translational symmetry. That is, it is not invariant get from one part of the volume to another by adding any
under translation of any distance, and it is only invari- reciprocal lattice vector§. All values ofq that lie outside
ant under translations of distances that are multiples of this zone, by definition, can be reached from within the zone

some fixed step lengths. The basic step lengths are the latticddy adding a reciprocal lattice vect@, and therefore are

constant,; (i = 1,2,3), and the basic step vectoss,4,,as) redundant labels. This zone is known as the Brillouin zone.
are the primitive lattice vectors. Because of the symmetry, The Gaussian fluctuation modes in a three-dimensional
the free energy functional of the system satisfi¢s = periodic structure are Bloch functions that can be labelled

7(r + a&). By preparing this translation it can be shown that by a wave vectork = kib; + kab, + ksbs, which lies in the
j:(r) zj.'(r + R)' for any lattice vectoR that is an integra| Brillouin zone. Each value of the wave vector inside the
multiple ofa;, i.e. R =la, + ma, + nag wherel, m, n are the Brillouin zone identifies an eigenfunction afwith eigen-
integers. The repeating unit of the periodic structure Valuei(k) and an eigenfunction of the form
is known as the unit cell. ke

Because of the discrete translational symmetries, the () =e""u(r) (15)
operator C must commute with all of the translation \here u(r) is a periodic function of the lattice
operators defined by the lattice vectoRs With this ue(r) = u (r + R) for all lattice vectorsR.

knowledge, the Gaussian fluctuation modes (eigenmodes ~From very general symmetry principles, we arrive at
of C) can be identified as simultaneous eigenfunctions of the the conclusion that the fluctuation modes in an ordered

translation operatof'z. As in the homogenous case, these polymeric structure with discrete periodicity in three

eigenfunctions are plane waves dimensions can be written as Bloch functions. All of the
L ) : ' information about such a mode is given by the wave vector
. (r +R R .
Tred" =T HR) = (dIR)da" (13) within the Brillouin zone and the periodic functian(r).

The periodic functionuy(r) is obtained by solving for

with the corresponding eigenvalue&® The fluctuation the original eigenvalue problem

modes can therefore be classified by specifying the wave
vector g. However, an important difference between the kA Nk ,

continuqoustranslation sym?netry and the discrete translation - Jdr e M Co(r, TR = MK (16)
symmetry is that not all values af yield different eigen- g

values. In order to proceed, it is convenient to define subjected to periodic conditiong(r)=ug(r +R). The
reciprocal lattice vectors. The three primitive lattice vectors function u,(r), and therefore the eigenmode profiles, are
(ag,axa3) give rise to three primitive reciprocal lattice determined by the above eigenvalue problem. because of
vectors by,by,b3) defined so thal-by = 276;. A general the periodic condition, the eigenvalue problem can be
reciprocal lattice vector is then specified By= I'b; + regarded as restricted to a single unit cell of the periodic
m'b, + n’b; wherel’, m’, n" are integers. Considering structure. As a general mathematical observation, restrict-
two modes, one with wave vectar and the other with ing an eigenvalue problem to a finite volume leads to a
wave vectorq + G, it is obvious that these two modes discrete spectrum of eigenvalues. For each valuk, dhe
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eigenvaluesA(k) are, therefore, expected to form an . B o

infinite set with discretely spaced eigenvalues, which can > Jdr Cap(ry T )W (r") = M(K) ¥ (r) (19)

be labelled with the band index A(k) = A,(k). Sincek A

enters only as a parameter in the eigenvalue problem,where\,(k) denotes the eigenvalues 6f and they form

the eigenvalue of each band, for givanvaries continu- a band structure. The eigenfunctions are orthogonal and

ously ask varies. Therefore, the fluctuation modes of an normalized

ordered polymeric system are described by a family of _ ,

continuous functionshy(k), indexed in order of increas- Wi iy = 0n bk — k') (20)

ing value by the band number. The information contained so that the fluctuationé¢ can be expanded using these

in these functions forms the band structure description eigenmodes

of the anisotropic fluctuations in an order polymeric phase. 5., (1) = Z Sbe (1) 1)
Point group symmetry and the irreducible Brillouin zone. ) ) "k o

An ordered polymeric phase may have symmetries other The Gaussian fluctuat!on contrl_butlon to the free energy can

than discrete translations. A given periodic structure may then be expressed using the eigenvalues of

also be. invariant under o'gher sym_metry.operatiqns sug:h 7O _ 1 Z A(K) 166 2

as rotations, mirror reflections, or inversions. This parti- 2 n nk

cular set of symmetry operations forms the point group ) ) ”_k N

of the periodic structure. The symmetry of an ordered The anisotropic fluctuations are therefore quantified by

phase is completely specified by the point group symmetry the eigenvalue banliy(k). The smallest eigenvaluey(k o)

and the translation symmetry, i.e. by specifying its space determines the stability of the ordered phaséxtko) > 0,

group. A few conclusions can be drawn about the fluctua- the ordered phase is stable; andi{ko) < 0, the ordered

tion modes of a system with rotational symmetry. Suppose Phase is unstable. The condition thg(k o) = O defines the

the Operatogizgi(ﬁ, 6) rotates vectors by an an@about spinodal point of the system. The profiles of the fluctuation

the A axis. The operatod,; on a scalar functiorf(r) is modes are characterized by the eigenfunctigfigr). In
defined byO,f(r)=f(® ~'r). If rotation by % leaves the  particular, the most unstable modg,(r), corresponding
system invariant, the operatdr must commute withoy, to the smallest eigenvalues, chg_racterlzesthe |.n|t|e_1l kinetics
i.e.[C,04] =0. This immediately leads to of the order—order phase transitions. The application of the

o . . stability analysis to diblock copolymer ordered phases have
C(Og¥nk(r)) = Ox (Cnic(r)) = Mo (K) (O Y (1)) (17) been carried ogt®

Therefore the functioffO, Y/ (r)) also satisfies the eigen-
value problem with the same eigenvalig(k) as yn(r). LANDAU—-BRAZOVSKII THEORY:
This means that the rotated mode is also an eigenmodep SIMPLE EXAMPLE
with the same eigenvalue. It can further be shown that the L
state (O ¥nc(r)) is the Bloch state with wave vectatk Because the above derivations are based on general
by applyingZ&*. Since (Ox¥n(r)) is the Bloch function symmetry arguments, the ponclusmns concerning the
with wave vectorkk and has the same eigenvalue as nature of anisotropic fluctuation modes are applicable to
¥u(r), it follows that the eigenvaluk,(k) has the rotational @l Systems with periodic structures. In this section, the
symmetryA,(RK) = Aq(K). It can then be concluded that utility of the theory is illustrated l_qy considering a simple
when there is rotational symmetry in the ordered structure, ©@mple, the Landau—Brazovskii (LB) theory for weak
the eigenvalue band.(k) has additional redundancies Crystallization. This theory is a general framework for
within the Brillouin zone. Similarly, whenever an ordered SYStems undergoing a phase transition driven by a short
phase has point group symmetries (rotations, mirror wavelength instability between the disordered liquid and
reflections, or inversions), the eigenvalue bands haveOrdered crystalline phases. Therefore this theory can be
those symmetries as well. Sinde(k) possesses the full appl_led to thermotropic an_d I_yotroplc |I.G|UId crysta}s, as well
symmetry of the point group, it is not necessary to con- @S diblock copolymerS. Within mean-field approximation,
sider them at everk-point in the Brillouin zone. The it has been shown that the LB theory can account for many
smallest region within the Brillouin zone for which the oOrdered structures such as the lamellar, cylindrical, and
(k) are not related by symmetry is called the irreducible SPherical phasé In what follows the stability analysis of
Brillouin zone. the ordered structures is outlined and applied to simple

In summary, the Gaussian fluctuations in an ordered lamellar phase. A complete stability analysis of the different
polymeric phase are described by a linear Hermitian ordered phages with LB theqry is beyond 'the.scope of this
operator¢ whose components are given by the second- Paper and will be_ presgnteql in future publications. The LB
order functional derivatives of the free energy functional frée energy functional is written

52

evaluated at the mean-field solution. The space group
symmetries of the ordered phases ensure that the eigen- 7({¢}):Jdr —02[(V2+q§)¢(r)]2+ I[¢(r)]2
values of this operataf can be labelled by a wave vector 805 2
within the irreducible Brillouin zone and a band indax
The eigenfunctions of this operator have the form of Bloch Y 3, K 4 29
[ oige SOOI+ ()] } (22
Yo (r) =¥ U (r) (18) whereg(r) is the order parameter characterizing the com-

position profiles, 7 is the reduced temperaturel, is
whereu, () = ux(r + R) is a periodic function. Explicit ~ the critical wavelength¢, is the bare correlation length,
solutions of the eigenvalues and eigenfunctions are obtainedandy andu are phenomenological constapts> 0.
by solving the eigenvalue problem We now follow the recipe outlined above to study the
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stability of the ordered phases within the LB theory. The correlation operator is easily found for the disordered phase
first step of the study is to determine the mean-field 22

solutions. The mean-field equation for the system can be AO(K) = % (k2 _ ?)2

derived easily by requiring® = 0 (9 3( Go)” +

2 The smallest eigenvalue occurs at a spherical shell specified
42—(;61(V2+q3)2¢0(r)+7¢0(r)— %[¢o(f)]2+ %Wo(r)]g:o by k = qo forgthe homogeneous pﬁase. For a V\F/)eakly
(23) ordered structure, there are two types of_ contributions
_ o 3 from the periodic potential/(r)= > (¢;V(G)€®". When
In general, the mean-field solution is specified by a set of the zeroth order eigenvalue®(k) is non-degenerate, the
reciprocal space lattice vector&} and the corresponding  correction from the periodic potential is of the order of

plane wave amplitudesy(G), ¢o(r)= Z{G}%(G)e'm,_ IV(G)I%. However, when the zeroth order eigenvalue is
which are obta!ned by sqlvmg the mean_—flel_d equation. degenerate, the correction becomes of the ordév()!,
The corresponding mean-field free energy is given by and, more importantly, a gap appears at the degenerate
E2 - po_int. The q§generacy occurs at the Bril!ouin zone bound-
7O = Jdr 21V + g5)o(r)]% + [bo(r)]? aries. Specifically, when the wave vectoties on a Bragg
805 2 plane defined bk? = (k — G)?, the eigenvalue of has

the formA©(k) = IV(G)I. The periodic potential has two
Y 3, K 4 effects on the eigenvalues, the eigenvalue spectrum
N §[¢0(r)] T m[%(r)] } @4 becomes anisotropic and the smallest eigenvalue now
occurs at the foints specified by the condititns g, and
The mean-field free energy must be minimized with respect k? = (k — G)# whereG corresponds to the largest value
to the periodicity of the structure to obtain the equilibrium  of [V(G)!.
lattice spacing. Mean-field solutions for different ordered |t is informative to apply the above results to a specific
structures have been obtaiftdn general, the mean-field  example, the weakly ordered lamellar phase in which the

equations have to be solved numerically. largest potential component occurs at the first harmonics
The second step of the study is to construct the two-point defined byG = (0,0, = o). The zone boundary is then
correlation operatoc(r,r’) using the mean-field solution.  defined by the conditiork, = =+ q¢/2. The smallest
For the LB theory, it is easy to show that the operator eigenvalue )\ng) occurs at the point defined by
é(r,r’) has the form’(r,r') =C(r)s(r —r'), where ki +kZ=0.7505. Therefore the most unstable modes
£2 occur at two rings defined big + ki =0.7505 and k, =
E(r) = =5V +dg)* + 7+ V(r) (25) + go/2. These predictions have been confirmed in the exact
o numerical calculatiors It should be noted that the most
where V(r) = — yéo(r) -+ 0.5u[do(r)]2 = Z{G}V(G)eie'r unstable fluctuation modes for the lamellar phase are

is a periodic function determined by the mean-field solution. infinitely degenerate. Th_is feature of the fluctuation modes
It should be noted that, in general, tdeoperator has a has been used to explain the occurrence of the modulated

9
dimension determined by the set of reciprocal lattice vectors layered structure™.
used in the analysis.

The third step of the study is to obtain the eigenvalue cONCLUSIONS AND DISCUSSION

band \,(k) and eigenfunctions)y(r) =€*"k(r) of the _ _
operator¢(r) by solving Using general symmetry arguments, it has been shown that

) for an ordered polymeric structure, the anisotropic fluctua-
£0 w2 22 tion modes can be catalogued by a wave ve&tavithin
[T%(V + do) +T+V(r)] Yk (1) = M(K)¥n(r)  (26) the irreducible Brillouin zone and band index The
o o . eigenvalues of the Gaussian fluctuation operator form a
This eigenvalue problem can be simplified by using the pand structure, similar to the electronic energy band
fact that_the e'%”ﬂ%{‘fg‘gps must be Bloch functions strycture in crystalline solids. The fluctuation modes are
V(1) = D (63U (G)€ . The eigenvalue problem  gescribed by the Bloch functions, which are plane waves

can now be cast into a linear eigenvalue problem modulated by periodic functions. What is emerging from
£2 these general statements is a powerful technique of

{%((k +GP— ) +7— )\n(k)} U (G) classifying the anisotropic fluctuation modes in an ordered

4095 polymeric phase. The stability and kinetic pathways of

, , the polymeric ordered phases can be analysed using the
+ g} V(G (G -G)=0 27) Gaussian fluctuation modes.

The band structure description of the fluctuation modes
The stability line of the ordered structure can now be deter- is obtained from the observation that the eigenfunctions of
mined by the condition\o(k) = 0. The corresponding the Gaussian fluctuation operatdr are also eigenfunc-
most unstable modes can then be used to identify kinetic tions of the space group symmetry operatorHowever,
pathways of the order—order phase transitions. this observation only provides a method to classify the

In general, the eigenvalue problem defined above haseigenfunctions ofé, i.e. it states that the eigenfunctions

to be solved numerically to obtain eigenvaluegk) and must assume the form of a Bloch function. In order to
the eigenfunctionsu(G). However, for weakly ordered obtain explicit eigenvalues and eigenfunctions the eigen-
structures, the potential(r) is small and it is possible to  value equations have to be solved. Although the symmetry
calculate the eigenvalue and eigenfunctions using perturba-arguments do not solve the eigenvalue problem completely,
tion theory. For a homogeneous phase, the order parameterthe solution of the eigenvalue problem is greatly simplified.
vanishes so tha¥(r) = 0. The eigenvalue of the two-point  The band structure description of the anisotropic Gaussian
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fluctuation modes provides a powerful method to catalogue 2.
the fluctuation modes, as demonstrated in the stability
analysis of diblock copolymer ordered phasgs

It should be emphasized that the symmetry arguments are 4.
not restricted to polymeric systems. The same general
statements on the nature of anisotropic fluctuation modes 5
can be applied to any ordered systems. In particular, the
application is expected of the fluctuation mode analysis
to the structural relationships between different ordered 7.
phases in other self-assembling amphiphilic systémsch

as the non-ionic surfactant systém 8.

9.

10.
11.
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