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The nature of anisotropic fluctuation modes in an ordered polymeric system is analysed using general symmetry
arguments. It is shown that the anisotropic fluctuation modes in a periodic phase can be classified using a wave
vector within the irreducible Brillouin zone and a band index. The spatial profiles of the fluctuation modes are
described by Bloch functions which are plane waves modulated by periodic functions. These general statements
enable the study of the stability and kinetic pathway of complex ordered polymeric structures.q 1998 Elsevier
Science Ltd. All rights reserved.
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INTRODUCTION

In the history of physics, great progress and/or deep insight
into a new problem were often obtained by making an
analogy with known problems. Examples in polymer
physics include the genesis of the now widely used Edwards
model1, which has its roots in quantum electrodynamics2;
and the relationship between polymer statistics and critical
phenomena3, which allows the application of the renor-
malization principles and techniques to polymers. Great
progress has also been obtained by using the analogy
between ideal polymer chain statistics under external
potentials and a quantum mechanical problem3. In this
paper, anisotropic fluctuation modes in ordered polymeric
phases are analysed by exploiting an analogy with solid
state physics4 of an electron in a crystalline solid. It is well
known that, due to the translational symmetry of the crystal
structures, the electronic energy forms a band structure4. It
will be shown that, for a polymeric ordered periodic
structure, the anisotropic fluctuation modes form a band
structure due to the translational symmetry. The fluctuation
modes can be classified using a wave vector within the
irreducible Brillouin zone and a band index. This cata-
loguing of fluctuation modes using symmetry provides a
powerful tool to study the fluctuations and instability of
ordered polymeric structures. Applications of this method
to diblock copolymer melts have led to many interesting
results5–9.

In the theory of anisotropic fluctuations in block copoly-
mer ordered phases6, the derivation of a band structure
for the fluctuation modes exploits the analogy between a
polymer chain in a periodic potential and an electron in
a crystalline solid,viz. both systems are described by a
Schrödinger equation with a periodic potential. This
development may lead to the wrong impression that the
band structure in the fluctuation modes is a result of this
particular quantum mechanics analogy. However, it must
be emphasized that the formation of the band structure is a
consequence of the discrete translational symmetry of the

ordered periodic structure. Therefore the application of this
powerful method is much more general. In this paper the
spectrum of Gaussian fluctuations around an ordered phase
is analysed using the symmetry argument, leading to the
band structure description of the fluctuation modes.

SYMMETRIES AND ANISOTROPIC FLUCTUATIONS

Gaussian fluctuations
In order to study the stability of an ordered structure, it is

necessary to consider thermal fluctuations around the
ordered phase. In the spirit of density functional theory,
the phase behaviour of a polymeric system can be described
by a free energy functionalF ({f} ) which depends on a set
of order parametersfa(r ). For an ordered phase, the density
profiles f(0)

a are periodic functions which are determined
by extremizing the free energy functional, leading to the
mean-field equations

]F
]fa(r )

�����
f

(0)
a

¼ 0 (1)

It should be noted that the derivative operators] stand for
functional derivatives. The fluctuations around the mean-
field ordered state can be described by expanding the
order parameters

fa(r ) ¼ f(0)
a (r ) þ dfa(r ) (2)

The free energy functional can be expanded around the
mean-field solution

F ¼ F (0) þ dF (1) þ dF (2) þ … (3)

where the zeroth order termF (0) ¼ F({f (0)}) is the mean-
field free energy, the first-order contribution vanishesdF (1)

¼ 0 sincef(0)
a (r ) extremizesF, and the higher order con-

tributions are given by functional derivatives ofF evaluated
at the mean-field solution

dF (n) ¼
∑

a1…an

1
n!

∫
dr1…drn
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For the study of the stability of the ordered phases, it is
useful to consider the second-order (Gaussian fluctuation)
contributions, which quantify the free energy cost of fluc-
tuations at this order. In particular, if this free energy cost is
positive, then the ordered phase is stable. The condition that
F (2) ¼ 0 determines the spinodal point of the ordered phase.

The Gaussian fluctuations in an ordered phase are
formally described by a two-point operatorĈ

F (2) ¼
1
2
〈df, Ĉdf〉 ;

1
2

∑
ab

∫
drdr 9Ĉab(r , r 9)dfa(r )dfb(r 9)

(5)

where the bracket denotes the usual scalar product,df
denotes a vector with componentsdfa(r ). For a set of real
order parameters,̂C is a linear real symmetric operator with
componentŝCab(r , r 9). If the order parameters are complex,
Ĉ is a linear Hermitian operator because the free energy of
the system must be real. The components ofĈ are given by
the second-order functional derivatives of the free energy
functional evaluated at the mean-field solution

Ĉab(r , r 9) ¼
]2F

]fa(r )]fb(r 9)

�����
f(0)

(6)

The fluctuations can now be expressed as a linear combina-
tion of eigenfunctions of̂C∑

b

∫
dr 9Ĉab(r , r 9)wb

l(r ) ¼lwa
l(r ) (7)

where l denotes the eigenvalues ofĈ. BecauseĈ is in
general Hermitian, the eigenvaluesl are real, and the eigen-
functions are orthogonal and normalized〈w à,wl9〉 ¼ dl,l9.
Using the eigenfunctionswl(r ) as the basis functions, the
fluctuationsdf can be written

dfa(r ) ¼
∑
l

dflw
a
l(r ) (8)

The Gaussian fluctuation contribution to the free energy can
then be expressed using the eigenvalues and eigenfunctions
of Ĉ

F (2) ¼
1
2
〈df, Ĉdf〉 ¼ 1

2

∑
l

lldfll
2 (9)

The anisotropic fluctuation modes can, therefore, be classi-
fied according to eigenfunctions of the operatorĈ. In parti-
cular, the free energy cost of the Gaussian fluctuations is
quantified by the eigenvalues of̂C. The most important
fluctuation mode is the one with the lowest eigenvaluel0.
The conditionl0 ¼ 0 determines the spinodal point (or the
instability point) of the ordered phase, and the correspond-
ing eigenfunctionwl0

characterizes the spatial profile of the
most unstable mode.

From the above derivations, it is obvious that the stability
analysis of an ordered polymeric phase using Gaussian
fluctuations follows three simple steps: (1) identification of
the appropriate order parameters and derivation of the free
energy functional; (2) construction of the phase diagram
by solving the mean-field equations; (3) construction of
the Gaussian fluctuation operator and identification of its
eigenvalues and eigenfunctions. These steps are concep-
tually simple. However, a brute force approach to the
problem is usually not efficient because of the complexity
of the structure. It is therefore desirable to simplify
the problem. In what follows it will be shown that the

application of a symmetry argument to the problem provides
a powerful method to classify the fluctuation modes.

Using symmetries to classify fluctuation modes
One of the great lessons of classical and quantum

mechanics is that the symmetries of a system allow one to
make a general statement about the system’s behaviour.
Because of the mathematical structure developed above, it
is not too surprising that symmetry also helps to determine
the properties of the anisotropic fluctuation modes in
ordered polymeric structures.

In order to study the fluctuation modes in an ordered
structure, the eigenvalue problem,Ĉwl ¼ lwl, has to be
solved. For a general ordered phase, the structure can
be quite complex so that it would be hard to solve the
eigenvalue problem explicitly. However, it is important to
notice that for an ordered structure, the system has certain
symmetries. These symmetries can be exploited to give a
powerful method for the description of the anisotropic
fluctuation modes.

It is helpful to place the above notion in a formal setting
using group theory arguments. For an ordered structure, the
system is invariant under certain symmetry operations such
as translation, rotation, and inversion. The application of
these operations on the order parameters is formally
described by an operator̂O. If a particular symmetric
operation is a symmetry of the ordered structure under
consideration, then it should not matter whether one
operates withĈ, or one first performs the symmetric
operation, then operates witĥC, and then changes them
back. Mathematically, this statement can be written as
Ĉ ¼ Ô ¹ 1ĈÔ. This equation can be rearranged as
[Ô, Ĉ] ¼ ÔĈ ¹ ĈÔ ¼ 0, where [Â, B̂] ; ÂB̂ ¹ B̂Â is defined
as the commutator of the two operatorsÂ andB̂. Therefore if
the ordered phase is symmetric under a particular
symmetry operation then that symmetry operator com-
mutes with Ĉ, i.e. [Ô, Ĉ] ¼ 0. The operation of this
commutator on any eigenfunctionwl of Ĉ leads to
[Ô, Ĉ]wl ¼ Ô(Ĉwl) ¹ Ĉ(Ôwl) ¼ 0, which can be rewritten as

Ĉ(Ôwl) ¼ Ô(Ĉwl) ¼ l(Ôwl) (10)

Therefore ifwl is an eigenfunction of̂C with eigenvaluel,
then Ôwl is also an eigenfunction of̂C with the same
eigenvaluel. If there is no degeneracy, then there can
only be one eigenfunction with eigenvaluel, so thatwl

andÔwl can be different only by a multiplicative factorh

Ôwl ¼ hwl (11)

However, this equation is just the eigenvalue equation for
the operatorÔ. Therefore, the eigenfunctionswl can be
catalogued using the eigenvaluesh of the symmetry opera-
tor Ô. In the case of degenerate modes, it is always possible
to form linear combinations of the degenerate modes to
make eigenfunctions of the symmetry operatorÔ. Generally
speaking, whenever two operators commute, one can con-
struct simultaneous eigenfunctions of both operators. This is
very convenient, since eigenfunctions and eigenvalues of
simple symmetry operators are easily determined, whereas
those forĈ are not. But if Ĉ commutes with a symmetry
operatorÔ, we can construct and catalogue the eigenfunc-
tions of Ĉ using theirÔ properties. In the rest of this section
the application of this approach using the space group
symmetries of an ordered phase will be considered.

Continuous translation symmetry.One symmetry that
a polymeric system can have is continuous translation
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symmetry,viz. a homogeneous disordered phase. This phase
is unchanged if everything is translated through the same
distance in a certain direction. Given this information, the
functional form of the fluctuation modes can be determined.
It is noted that the disordered phase has the highest possible
symmetry for a polymeric system. The ordered structures
are obtained by breaking the symmetry of the disordered
phase.

A structure with translational symmetry is unchanged
by a translation through a displacementd. For eachd, a
translational operator̂Td can be defined. When operating
on a function f(r ), T̂d shifts the argument byd,
T̂df (r ) ¼ f (r þ d). If the structure under consideration has
continuous translational symmetry, thenT̂d commutes with
Ĉ, [T̂d, Ĉ] ¼ 0. The fluctuation modes of̂C can now be
classified according to how they behave underT̂d. In order
to proceed, the eigenfunctions of the translational operator
T̂d have to be obtained. It is easy to prove that the plane
waves eiq·r are eigenfunctions of any translational operator

T̂deiq·r ¼ eiq·(r þ d) ¼ (eiq·d)eiq·r (12)

The corresponding eigenvalues are eiq·d. The fluctuation
modes of the homogeneous system must be eigenfunctions
of all theT̂ds, so they should have the plane wave form eiq·r.
The fluctuation modes in the homogeneous phase can there-
fore be classified by plane waves with particular values for
q, the wave vector.

Discrete translation symmetry.For an ordered poly-
meric phase, the system does not have continuous trans-
lational symmetry. Instead, the ordered structure has
discrete translational symmetry. That is, it is not invariant
under translation of any distance, and it is only invari-
ant under translations of distances that are multiples of
some fixed step lengths. The basic step lengths are the lattice
constantai (i ¼ 1,2,3), and the basic step vectors (a1,a2,a3)
are the primitive lattice vectors. Because of the symmetry,
the free energy functional of the system satisfiesF(r ) ¼
F(r þ ai). By preparing this translation it can be shown that
F(r ) ¼ F(r þ R), for any lattice vectorR that is an integral
multiple ofai, i.e.R ¼ la1 þ ma2 þ na3 wherel, m, n are the
integers. The repeating unit of the periodic structure
is known as the unit cell.

Because of the discrete translational symmetries, the
operator Ĉ must commute with all of the translation
operators defined by the lattice vectorsR. With this
knowledge, the Gaussian fluctuation modes (eigenmodes
of Ĉ) can be identified as simultaneous eigenfunctions of the
translation operator̂TR. As in the homogenous case, these
eigenfunctions are plane waves

T̂Reiq·r ¼ eiq·(r þ R) ¼ (eiq·R)eiq·r (13)

with the corresponding eigenvalues eiq·R. The fluctuation
modes can therefore be classified by specifying the wave
vector q. However, an important difference between the
continuous translation symmetry and the discrete translation
symmetry is that not all values ofq yield different eigen-
values. In order to proceed, it is convenient to define
reciprocal lattice vectors. The three primitive lattice vectors
(a1,a2,a3) give rise to three primitive reciprocal lattice
vectors (b1,b2,b3) defined so thatai·bj ¼ 2pdij . A general
reciprocal lattice vector is then specified byG ¼ l9b1 þ
m9b2 þ n9b3 where l9, m9, n9 are integers. Considering
two modes, one with wave vectorq and the other with
wave vectorq þ G, it is obvious that these two modes

have the same eigenvalue eiq·R becauseG·R ¼ (ll 9 þ mm9
þ nn9)2p by definition. In fact, all the modes with wave
vectors of the formq þ G have the same eigenvalue, there-
fore they form a degenerate set. Because any linear combi-
nation of these degenerate eigenfunctions is itself an
eigenfunction with the same eigenvalue, linear combina-
tions of the original modes can be used to construct eigen-
functions of the form

wq(r ) ¼
∑
G

c(G)ei(q þ G)·r

¼ eiq·r
∑
G

c(G)eiG·r ¼ eiq·r uq(r ) (14)

wherec(G) are expansion coefficients to be determined by
explicit solution, anduq(r ) is a (by construction) periodic
function uq(r ) ¼ uq(r þ R). The discrete periodicity in the
ordered structure leads to an eigenfunction which is simply
the product of a plane wave with a periodic function. This
result is commonly known as Bloch’s theorem4, and the
form of the eigenfunction is known as a Bloch function.
One key fact about the Bloch functions is that the Bloch
function with wave vectorq and the Bloch function with
wave vectorq þ G are identical. Theqs that differ by a
reciprocal lattice vectorG are not different from a physical
point of view. Furthermore, the eigenvalues of the fluctua-
tion modes must also be periodic inq: l(q) ¼ l(q þ G).
Therefore there is a lot of redundancy in the labelq.
Because of the periodicity inq, attention can be restricted
to a finite zone in the reciprocal space in which one cannot
get from one part of the volume to another by adding any
reciprocal lattice vectorsG. All values ofq that lie outside
this zone, by definition, can be reached from within the zone
by adding a reciprocal lattice vectorG, and therefore are
redundant labels. This zone is known as the Brillouin zone.
The Gaussian fluctuation modes in a three-dimensional
periodic structure are Bloch functions that can be labelled
by a wave vector,k ¼ k1b1 þ k2b2 þ k3b3, which lies in the
Brillouin zone. Each value of the wave vector inside the
Brillouin zone identifies an eigenfunction ofĈ with eigen-
valuel(k) and an eigenfunction of the form

wk(r ) ¼ eik·r uk(r ) (15)

where uk(r ) is a periodic function of the lattice
uk(r ) ¼ uk (r þ R) for all lattice vectorsR.

From very general symmetry principles, we arrive at
the conclusion that the fluctuation modes in an ordered
polymeric structure with discrete periodicity in three
dimensions can be written as Bloch functions. All of the
information about such a mode is given by the wave vector
within the Brillouin zone and the periodic functionuk(r ).
The periodic functionuk(r ) is obtained by solving for
the original eigenvalue problem∑

b

∫
dr 9e¹ k·r Ĉab(r , r 9)eik·r 9ub

k(r 9) ¼ l(k)ua
k (r ) (16)

subjected to periodic conditionua
k (r ) ¼ ua

k (r þ R). The
function uk(r ), and therefore the eigenmode profiles, are
determined by the above eigenvalue problem. because of
the periodic condition, the eigenvalue problem can be
regarded as restricted to a single unit cell of the periodic
structure. As a general mathematical observation, restrict-
ing an eigenvalue problem to a finite volume leads to a
discrete spectrum of eigenvalues. For each value ofk, the
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eigenvaluesl(k) are, therefore, expected to form an
infinite set with discretely spaced eigenvalues, which can
be labelled with the band indexn, l(k) ¼ ln(k). Sincek
enters only as a parameter in the eigenvalue problem,
the eigenvalue of each band, for givenn, varies continu-
ously ask varies. Therefore, the fluctuation modes of an
ordered polymeric system are described by a family of
continuous functions,ln(k), indexed in order of increas-
ing value by the band number. The information contained
in these functions forms the band structure description
of the anisotropic fluctuations in an order polymeric phase.

Point group symmetry and the irreducible Brillouin zone.
An ordered polymeric phase may have symmetries other
than discrete translations. A given periodic structure may
also be invariant under other symmetry operations such
as rotations, mirror reflections, or inversions. This parti-
cular set of symmetry operations forms the point group
of the periodic structure. The symmetry of an ordered
phase is completely specified by the point group symmetry
and the translation symmetry, i.e. by specifying its space
group. A few conclusions can be drawn about the fluctua-
tion modes of a system with rotational symmetry. Suppose
the operatorR ¼ R (n̂, v) rotates vectors by an anglev about
the n̂ axis. The operator̂OR on a scalar functionf(r ) is
defined byÔR f (r ) ¼ f (R ¹ 1r ). If rotation by R leaves the
system invariant, the operatorĈ must commute withÔR ,
i.e. [Ĉ, ÔR ] ¼ 0. This immediately leads to

Ĉ(ÔR wnk(r )) ¼ ÔR (Ĉwnk(r )) ¼ ln(k)(ÔR wnk(r )) (17)

Therefore the function(ÔR wnk(r )) also satisfies the eigen-
value problem with the same eigenvalueln(k) as wnk(r ).
This means that the rotated mode is also an eigenmode
with the same eigenvalue. It can further be shown that the
state (ÔR wnk(r )) is the Bloch state with wave vectorRk
by applying T̂R

4. Since (ÔR wnk(r )) is the Bloch function
with wave vector Rk and has the same eigenvalue as
wnk(r ), it follows that the eigenvalueln(k) has the rotational
symmetryln(Rk) ¼ ln(k). It can then be concluded that
when there is rotational symmetry in the ordered structure,
the eigenvalue bandln(k) has additional redundancies
within the Brillouin zone. Similarly, whenever an ordered
phase has point group symmetries (rotations, mirror
reflections, or inversions), the eigenvalue bands have
those symmetries as well. Sinceln(k) possesses the full
symmetry of the point group, it is not necessary to con-
sider them at everyk-point in the Brillouin zone. The
smallest region within the Brillouin zone for which the
ln(k) are not related by symmetry is called the irreducible
Brillouin zone.

In summary, the Gaussian fluctuations in an ordered
polymeric phase are described by a linear Hermitian
operator Ĉ whose components are given by the second-
order functional derivatives of the free energy functional
evaluated at the mean-field solution. The space group
symmetries of the ordered phases ensure that the eigen-
values of this operator̂C can be labelled by a wave vector
within the irreducible Brillouin zone and a band indexn.
The eigenfunctions of this operator have the form of Bloch
functions

wa
nk(r ) ¼ eik·r unk(r ) (18)

whereunk(r ) ¼ unk(r þ R) is a periodic function. Explicit
solutions of the eigenvalues and eigenfunctions are obtained
by solving the eigenvalue problem

∑
b

∫
dr 9Ĉab(r , r 9)wb

nk(r 9) ¼ln(k)wa
nk(r ) (19)

whereln(k) denotes the eigenvalues ofĈ, and they form
a band structure. The eigenfunctions are orthogonal and
normalized

〈wnk ,wnk9〉 ¼ dn, n9d(k ¹ k9) (20)

so that the fluctuationsdf can be expanded using these
eigenmodes

dfa(r ) ¼
∑
nk

dfnkw
a
nk(r ) (21)

The Gaussian fluctuation contribution to the free energy can
then be expressed using the eigenvalues ofĈ

F (2) ¼
1
2

∑
nk

ln(k)ldfnk l
2

The anisotropic fluctuations are therefore quantified by
the eigenvalue bandln(k). The smallest eigenvaluel0(k 0)
determines the stability of the ordered phase: ifl0(k 0) . 0,
the ordered phase is stable; and ifl0(k 0) , 0, the ordered
phase is unstable. The condition thatl0(k 0) ¼ 0 defines the
spinodal point of the system. The profiles of the fluctuation
modes are characterized by the eigenfunctionswa

nk(r ). In
particular, the most unstable mode,wa

0k0
(r ), corresponding

to the smallest eigenvalues, characterizes the initial kinetics
of the order–order phase transitions. The application of the
stability analysis to diblock copolymer ordered phases have
been carried out5–9.

LANDAU–BRAZOVSKII THEORY:
A SIMPLE EXAMPLE

Because the above derivations are based on general
symmetry arguments, the conclusions concerning the
nature of anisotropic fluctuation modes are applicable to
all systems with periodic structures. In this section, the
utility of the theory is illustrated by considering a simple
example, the Landau–Brazovskii (LB) theory for weak
crystallization. This theory is a general framework for
systems undergoing a phase transition driven by a short
wavelength instability between the disordered liquid and
ordered crystalline phases. Therefore this theory can be
applied to thermotropic and lyotropic liquid crystals, as well
as diblock copolymers10. Within mean-field approximation,
it has been shown that the LB theory can account for many
ordered structures such as the lamellar, cylindrical, and
spherical phases10. In what follows the stability analysis of
the ordered structures is outlined and applied to simple
lamellar phase. A complete stability analysis of the different
ordered phases with LB theory is beyond the scope of this
paper and will be presented in future publications. The LB
free energy functional is written

F ({f} ) ¼

∫
dr

(
y2

0

8q2
0

[(=2 þ q2
0)f(r )]2 þ

t

2
[f(r )]2

¹
g

3!
[f(r )]3 þ

m

4!
[f(r )]4

)
ð22Þ

wheref(r ) is the order parameter characterizing the com-
position profiles, t is the reduced temperature,q0 is
the critical wavelength,y0 is the bare correlation length,
andg andm are phenomenological constantsm . 0.

We now follow the recipe outlined above to study the
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stability of the ordered phases within the LB theory. The
first step of the study is to determine the mean-field
solutions. The mean-field equation for the system can be
derived easily by requiringF (1) ¼ 0

y2
0

4q4
0

(=2 þ q2
0)2f0(r ) þ tf0(r ) ¹

g

2
[f0(r )]2 þ

m

3!
[f0(r )]3 ¼ 0

(23)

In general, the mean-field solution is specified by a set of
reciprocal space lattice vectors {G} and the corresponding
plane wave amplitudesf0(G), f0(r ) ¼

∑
{ G} f0(G)eiG·r ,

which are obtained by solving the mean-field equation.
The corresponding mean-field free energy is given by

F (0) ¼

∫
dr

(
y2

0

8q2
0

[(=2 þ q2
0)f0(r )]2 þ

t

2
[f0(r )]2

¹
g

3!
[f0(r )]3 þ

m

4!
[f0(r )]4

)
ð24Þ

The mean-field free energy must be minimized with respect
to the periodicity of the structure to obtain the equilibrium
lattice spacing. Mean-field solutions for different ordered
structures have been obtained10. In general, the mean-field
equations have to be solved numerically.

The second step of the study is to construct the two-point
correlation operator̂C(r , r 9) using the mean-field solution.
For the LB theory, it is easy to show that the operator
Ĉ(r , r 9) has the formĈ(r , r 9) ¼ Ĉ(r )d(r ¹ r 9), where

Ĉ(r ) ¼
y2

0

4q2
0

(=2 þ q2
0)2 þ t þ V(r ) (25)

where V(r ) ; ¹ gf0(r ) þ 0:5m[f0(r )]2 ¼
∑

{ G} V(G)eiG·r

is a periodic function determined by the mean-field solution.
It should be noted that, in general, theĈ operator has a
dimension determined by the set of reciprocal lattice vectors
used in the analysis.

The third step of the study is to obtain the eigenvalue
band ln(k) and eigenfunctionswnk(r ) ¼ eik·runk(r ) of the
operatorĈ(r ) by solving

y2
0

4q2
0

(=2 þ q2
0)2 þ t þ V(r )

� �
wnk(r ) ¼ ln(k)wnk(r ) (26)

This eigenvalue problem can be simplified by using the
fact that the eigenfunctions must be Bloch functions
wnk(r ) ¼

∑
{ G} unk(G)ei(k þ G)·r . The eigenvalue problem

can now be cast into a linear eigenvalue problem

y2
0

4q2
0

((k þ G)2 ¹ q2
0)2 þ t ¹ln(k)

� �
unk(G)

þ
∑
{ G9}

V(G9)unk(G ¹ G9) ¼ 0 ð27Þ

The stability line of the ordered structure can now be deter-
mined by the conditionl0(k) ¼ 0. The corresponding
most unstable modes can then be used to identify kinetic
pathways of the order–order phase transitions.

In general, the eigenvalue problem defined above has
to be solved numerically to obtain eigenvaluesln(k) and
the eigenfunctionsunk(G). However, for weakly ordered
structures, the potentialV(r ) is small and it is possible to
calculate the eigenvalue and eigenfunctions using perturba-
tion theory6. For a homogeneous phase, the order parameter
vanishes so thatV(r ) ¼ 0. The eigenvalue of the two-point

correlation operator is easily found for the disordered phase

l(0)(k) ¼
y2

0

4q2
0

(k2 ¹ q2
0)2 þ t

The smallest eigenvalue occurs at a spherical shell specified
by k ¼ q0 for the homogeneous phase. For a weakly
ordered structure, there are two types of contributions

from the periodic potentialV(r ) ¼
∑

{ G} V(G)eiG·r . When
the zeroth order eigenvaluel (0)(k) is non-degenerate, the
correction from the periodic potential is of the order of
lV(G)l2. However, when the zeroth order eigenvalue is
degenerate, the correction becomes of the order oflV(G)l,
and, more importantly, a gap appears at the degenerate
point. The degeneracy occurs at the Brillouin zone bound-
aries. Specifically, when the wave vectork lies on a Bragg
plane defined byk 2 ¼ (k ¹ G)2, the eigenvalue of̂C has
the forml (0)(k) 6 lV(G)l. The periodic potential has two
effects on the eigenvalues, the eigenvalue spectrum
becomes anisotropic and the smallest eigenvalue now
occurs at the points specified by the conditionsk ¼ q0 and
k 2 ¼ (k ¹ G)2, whereG corresponds to the largest value
of lV(G)l.

It is informative to apply the above results to a specific
example, the weakly ordered lamellar phase in which the
largest potential component occurs at the first harmonics
defined byG ¼ (0,0, 6 q0). The zone boundary is then
defined by the conditionkz ¼ 6 q0/2. The smallest
eigenvalue l0(k) occurs at the point defined by
k2

x þ k2
y ¼ 0:75q2

0. Therefore the most unstable modes
occur at two rings defined byk2

x þ k2
y ¼ 0:75q2

0 and kz ¼
6 q0/2. These predictions have been confirmed in the exact
numerical calculations5. It should be noted that the most
unstable fluctuation modes for the lamellar phase are
infinitely degenerate. This feature of the fluctuation modes
has been used to explain the occurrence of the modulated
layered structure7–9.

CONCLUSIONS AND DISCUSSION

Using general symmetry arguments, it has been shown that
for an ordered polymeric structure, the anisotropic fluctua-
tion modes can be catalogued by a wave vectork within
the irreducible Brillouin zone and band indexn. The
eigenvalues of the Gaussian fluctuation operator form a
band structure, similar to the electronic energy band
structure in crystalline solids. The fluctuation modes are
described by the Bloch functions, which are plane waves
modulated by periodic functions. What is emerging from
these general statements is a powerful technique of
classifying the anisotropic fluctuation modes in an ordered
polymeric phase. The stability and kinetic pathways of
the polymeric ordered phases can be analysed using the
Gaussian fluctuation modes.

The band structure description of the fluctuation modes
is obtained from the observation that the eigenfunctions of
the Gaussian fluctuation operatorĈ are also eigenfunc-
tions of the space group symmetry operatorÔ. However,
this observation only provides a method to classify the
eigenfunctions ofĈ, i.e. it states that the eigenfunctions
must assume the form of a Bloch function. In order to
obtain explicit eigenvalues and eigenfunctions the eigen-
value equations have to be solved. Although the symmetry
arguments do not solve the eigenvalue problem completely,
the solution of the eigenvalue problem is greatly simplified.
The band structure description of the anisotropic Gaussian
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fluctuation modes provides a powerful method to catalogue
the fluctuation modes, as demonstrated in the stability
analysis of diblock copolymer ordered phases7,8.

It should be emphasized that the symmetry arguments are
not restricted to polymeric systems. The same general
statements on the nature of anisotropic fluctuation modes
can be applied to any ordered systems. In particular, the
application is expected of the fluctuation mode analysis
to the structural relationships between different ordered
phases in other self-assembling amphiphilic systems11 such
as the non-ionic surfactant system12.
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